Presentation at The 8th USA/Europe ATM Seminar

Optimizing Airspace Sectors for Varying Demand Patterns using Multi-Controller Staffing

Shin-Lai (Alex) Tien

University of Maryland

College Park, Maryland, U.S.A.

Robert Hoffman, Ph.D.

Metron Aviation, Inc.

Dulles, Virginia, U.S.A.

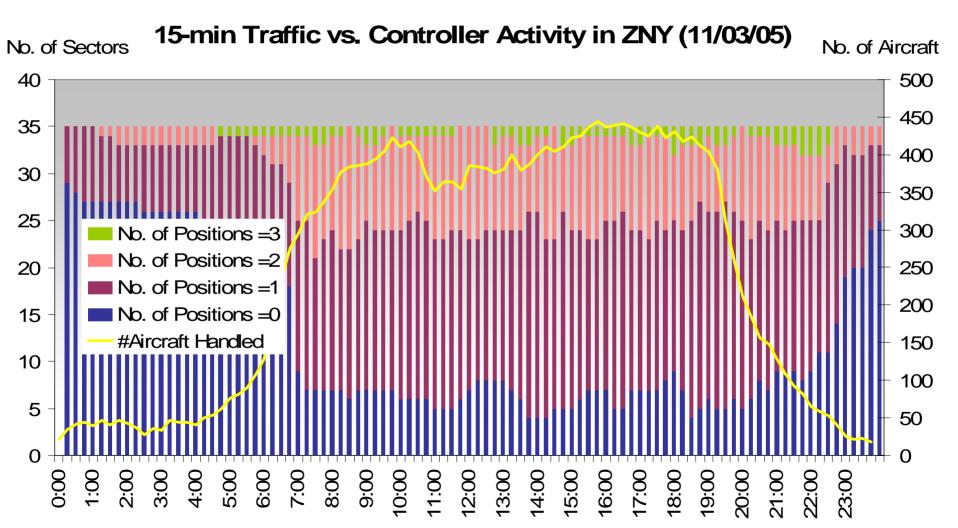
Outline

- Introduction
- Motivating Example
- Formulation of Mixed Integer Program
- Numerical Experiment
- Concluding Remarks

Introduction

- Enroute sector boundary design should consider not only balancing controller workload but also efficient controller staffing.
- Traditional sectorization schemes input demand data aggregated over the planning horizon
 - E.g. one day, one month.
 - Variance in demand might result in inefficient usage of controller workforce.
- We propose new design concepts in clean-sheet sectorization:
 - Address demand variation across the planning horizon.
 - Consider efficient staffing plans for multi-period demand patterns.

Introduction (cont'd)


- In the U.S., a common way to deal with temporary demand peaks in a sector is to use multiple controller teams.
 - E.g. a Radar-side controller plus a Data-side controller.

C. MESTUV. INST.	Aircraft Worked	IN BUNDS HIGH
Function	Number of Aircraft Worked During 15-Minute Interval	Number of Controllers
High Altitude	0	0
Radar Sector	1 - 12	consecuto)
	13 - 17	2
	18 - 29	3
	30+	4

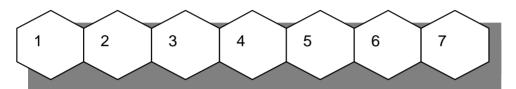
Staffing vs. Traffic

Enroute Air Traffic Controllers

Functions:

- F1 Pilot communication/direction (verbal)
 - ◆ Tell pilot how to move.
- F2 ATC coordination
 - E.g. neighboring controllers.
- F3 Data processing
 - Flight strip marking and juggling.
- Common configuration: R-side (F1, F2) + D-side (F3)

Scarce and expensive resources:


- The FAA will hire and train more than 15,000 controllers over the next decade.
- Controller labor costs have increased from \$82.98 per flight in FY1998 to \$137.81 per flight in FY2006.

Motivating Example

Consider seven connected hex-cells to be grouped into 2 sectors.

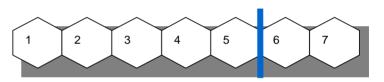
Only 6 ways to do this, since sectors must be contiguous!

Cell Demand Across Time Periods (T = 1, 2, 3):

Cell		1	2	3	4	5	6	7
Demand	T=1	2	3	0	2	4	2	5
By Period	<i>T</i> =2	5	3	3	1	5	3	5
	<i>T</i> =3	0	2	1	2	1	3	2
	Sum:	7	8	4	5	10	8	12

- Compare two design concepts:
 - Aggregated Demand with Balancing Sector Workloads
 - Multi-period Demand with Awareness of Controller Capability

Motivating Example (cont'd)


 Suppose that 1 controller can only handle up to 10 demand units in a time period.

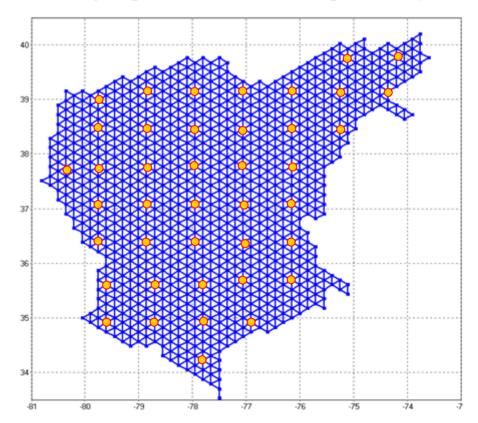
Optimal Workload Balancing:

Controller Usage		Partition			
		[1,2,3,4]	[5,6,7]		
	T=1	1	2		
Period	T=2	2	2		
	<i>T</i> =3	1	1		
Tota	al	9			

Multi-period Model Considering Controller Capability:

Controller Usage		Partition				
		[1,2,3,4,5]	[6,7]			
	T=1	2	1			
Period	T=2	2	1			
	<i>T</i> =3	1	1			
Tota	al	8				

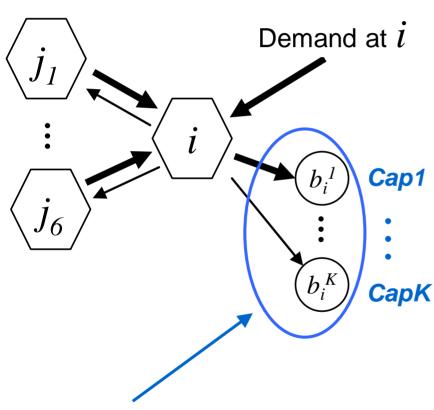
Proposed Approach

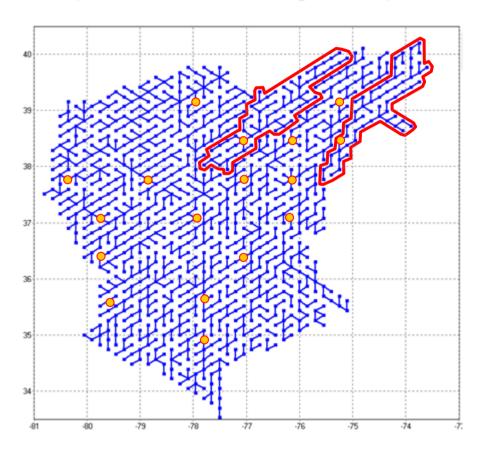

Tile-and-group

A mixed integer program is formulated to group the hex-cells.

Model Features:

- Time-varying demand patterns as input.
- Sector capacity changing over time by varying controller staffing.
- Sector shape in alignment with major traffic.


Underlying Network for Target Airspace


Network Structure at a Seed Node

Dummy nodes and links for sector capacity values.

Sample Solution for Target Airspace

Multi-Period Variable Controller Model (MPVC)

A Variant of Fixed-Charged **Network Design Problem (FCND)**

$$\underset{t \in \{1, \dots, T\}}{\operatorname{Minimize}} \sum_{\substack{i \in S, j \in B_i \\ t \in \{1, \dots, T\}}} f_{ij}^t p_{ij}^t + \mu \sum_{\substack{i \in \{1, \dots, I\} \\ j \in A_i}} c_{ij}^t x_{ij}^t$$

Controller Cost

Flow Alignment Penalty

(1)
$$\sum_{j \in A_i} x_{ji}^t + d_i^t = \begin{cases} \sum_{j \in A_i} x_{ij}^t \\ \sum_{j \in A_i \cup B_i} x_{ij}^t \end{cases}$$

for all $i \notin S, t \in \{1, ..., T\}$

for all $i \in S, t \in \{1, ..., T\}$

$$\sum_{j \in A_i} q_{ij} = \begin{cases} 1 \\ 1 - \sum_{j \in B_i} p_{ij}^t \end{cases}$$

 $i \notin S$ for all

Link Selection

$$x_{ij}^t \le M_{ij} q_{ij}$$

for all $i \in S$, $t \in \{1, ..., T\}$

$$(3) x_{ij}^t \le M_{ij} q_{ij}$$

(4)

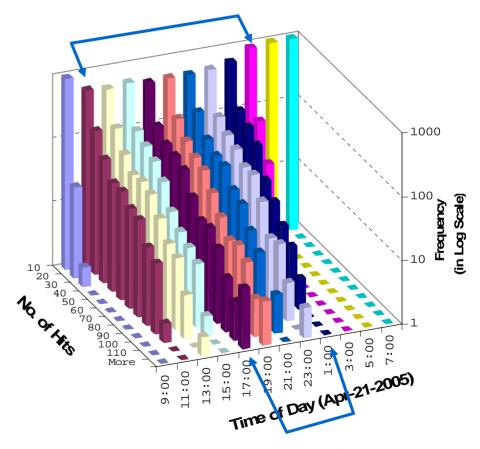
for all
$$i \in \{1,...,I\}, j \in A_i, t \in \{1,...,T\}$$

Controller Staffing Selection

$$M_{i,b_i^{k-1}} p_{i,b_i^k}^t \le x_{i,b_i^k}^t \le M_{i,b_i^k} p_{i,b_i^k}^t$$

for all
$$i \in S, k \in \{1, ..., K\}, t \in \{1, ..., T\}$$

Numerical Experiments

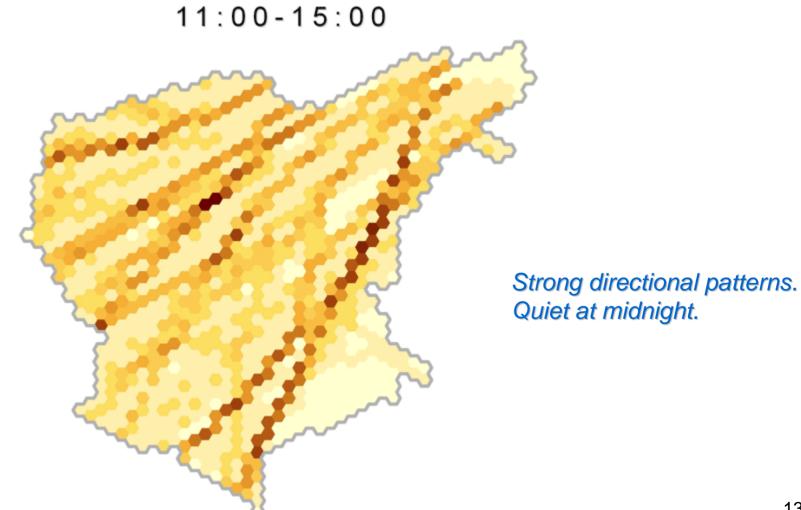

Basic Settings:

- ZDC airspace is translated into a network of 1043 nodes, 2961 links, and 41 seed nodes.
- 2 choices of sector capacity
 values are considered
 - I.e. at most 2 controller positions per sector.

Experiments

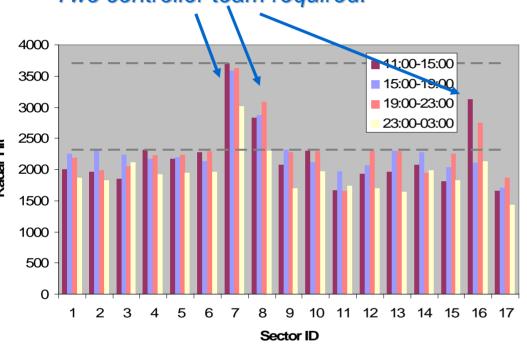
- High Variation Case(4 periods x 4 hours)
- Low Variation Case(4 periods x 2 hours)

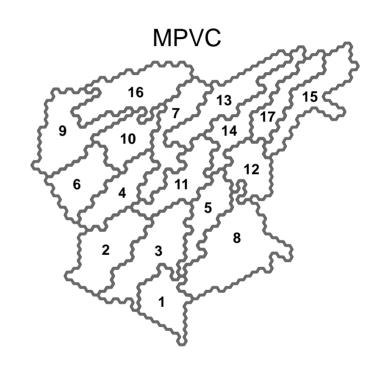
High Demand Variation Case, 11:00 –03:00



Low Demand Variation Case, 17:00 – 01:00

ZDC Demand Variation on April 21 2005





MPVC Results (High Demand Variation Case)

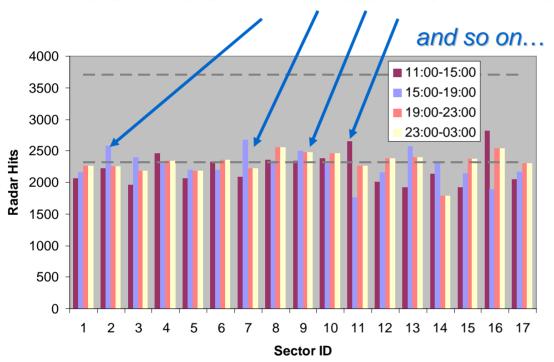
Resulting	Resulti	ng No. of	Capacity	oacity Assumed		
No. of Sectors	11:00 / 15:00	15:00 19:00	19:00 / 23:00	23:00 / 03:00	Using 1 Position	Using 2 Positions
17	20	19	20	18	2315	3704

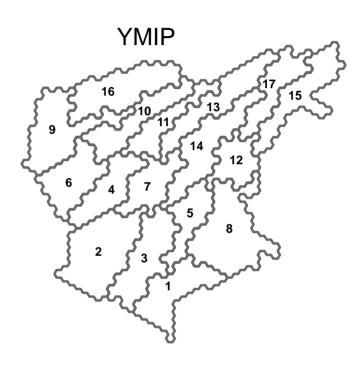
Total Controller Hours: $(20+19+20+18)\times 4 = 308$

Setting of YMIP

- Yousefi et al (2007) developed a workload balancing model with the following characteristics:
 - Optimizing sector boundaries to align with traffic.
 - Workload deviation among sectors is controlled within a tolerance value.
 - Number of sectors is set as an input value.
 - Demand is aggregated across the planning horizon.
- By imposing additional constraints and set T=1 and K=1, we can obtain YMIP results:

$$\sum_{i \in S, j \in B_i} p_{ij}^t = \text{ Desired No. of Sectors}$$


$$p_{i,b_i^1}^t (1-\gamma) \mathbf{W}_{\text{target}} \le x_{i,b_i^1}^t \le p_{i,b_i^1}^t (1+\gamma) \mathbf{W}_{\text{target}} \quad \text{for all } i \in S$$


YMIP Results (High Demand Variation Case)

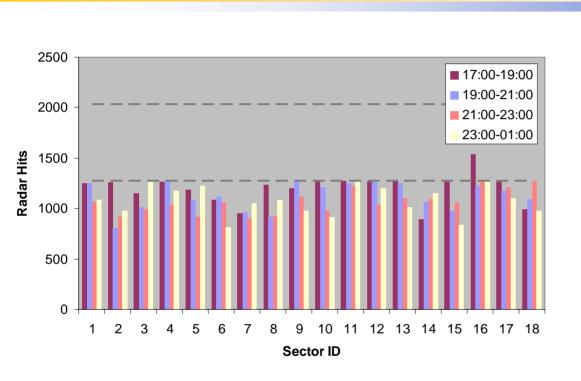
All bars over dashed line invoke a 2-controller team

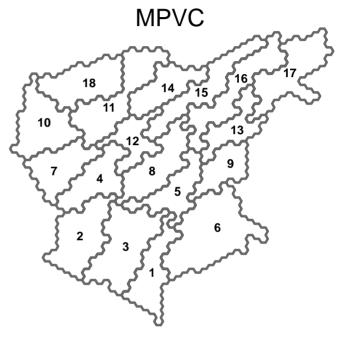
Resulting	Resulting No. of Controller Shifts Capacity Assumed					Assumed
No. of Sectors	11:00 / 15:00	15:00 19:00	19:00 / 23:00	23:00 / 03:00	Using 1 Position	Using 2 Positions
17	24	24	26	17	2315	3704

Total Controller Hours: $(24+24+26+17)\times 4 = 364$

18% more in controller hours than MPVC result!

Notes on High Demand Variation Case




- Unawareness of controller team sizes might create an inefficient design (e.g. second controller needed but not well utilized).
- Different design strategies of implementing YMIP:
 - Limiting the target workload under 1-controller threshold:
 - ◆ In this instance, YMIP requires 20 sectors and thus 320 controller hours (still higher than the MPVC result).
 - Applying YMIP for individual periods:
 - ◆ Periodic reapplication probably requires wholesale boundary changes during "the heat of battle".

MPVC Results (Low Demand Variation Case)

Resulting	Resulti	ng No. of	Capacity	acity Assumed		
No. of Sectors	17:00 19:00	19:00 21:00	21:00 / 23:00	23:00 / 01:00	Using 1 Position	Using 2 Positions
18	19	18	18	18	1272	2035

When demand is steady, creating two 1-controller sectors is more efficient than one 2-controller sector!

Numerical Results Summary

Test Case	High Demar	nd Variation	Low Deman	d Variation	
Planning Horizon	163	Hrs	8 H	Irs	
Duration per Period	4 I	Irs	2 Hrs		
Model (MIP)	MPVC YMIP		MPVC	YMIP	
Design Objective	Minimize no. of controller shifts and sectors; Minimize flow alignment cost	Balance workload among sectors; Minimize flow alignment cost	Minimize no. of controller shifts and sectors; Minimize flow alignment cost	Balance workload among sectors; Minimize flow alignment cost	
Required Controller- hours	308 .	364	146 .	162	
Avg. Flight Dwell Time	8.0	8.5	7. 8	8.2	
BalDev+	59.1%	5.0%	18.8%	5.0%	
BalDev-	-23.7%	-5.0%	-13.4%	-5.0%	

Conclusion Remarks

- We extend the scope of workload-balancing sectorization techniques in the literature to allow for imbalances that align with controller team sizes.
- Multi-controller positions are used to address demand variation over multiple periods.
- Multi-period design also avoids frequent and disruptive wholesale resectorization throughout the day.
- Our work can be extended by taking weekday or seasonal effects into account.

Future Works

- Quality sector design has multi-objectives. There are other factors to be considered (e.g. intersection and flow proximity to sector boundary).
- The linkage between controller staffing and sector capacity values should be further explored.
- The running time of MPVC increases with the number of periods and the size of the underlying network. More efficient solution method is needed.
- Further extensions might include:
 - Non-controller resource constraints on sector capacity (e.g. radio frequencies).
 - The uncertainty of capacity estimates and demand forecasts.

Thank you!

